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Abstract. Partial correlation is a popular and principled metric for de-
termining edges between nodes in a graph. However when the goal is to
both estimate network connectivity from sample data and subsequently
partition the result, methods such as spectral clustering can be applied
much more efficiency and at larger scale. We derive a method that can
similarly partition partial correlation networks directly from sample data.
The method is closely related to spectral clustering, and can be imple-
mented with comparable efficiency. Our results also provide new insight
into the success of spectral clustering in many fields, as an approximation
to clustering of partial correlation networks.
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1 Introduction

Partial correlation is a natural choice for defining edges in a network. Unlike
edges based on affinity or distance, the partial correlation removes the effect of
indirect relationships [4] and measures the relationship based on the residual
only (Fig. 1). Gaussian graphical models [9] directly relate partial correlation
values to the inverse of the sample covariance matrix and to variable prediction
via linear regression [6]. Such computations are not efficient for large networks,
however; a separate regression problem must be solved for every variable. When
the goal is clustering or partitioning of the network, the problem is usually
approached, from a different perspective, with graphs formed simply via affinity
or univariate correlation. This is used as a starting point for graph-theoretical
approaches to partitioning such as spectral clustering [5], a continuous relaxation
of the normalized cut algorithm for partitioning graphs.

In simple terms, spectral clustering is typically computed by applying k-
means clustering to the rows of the last k eigenvectors of the Laplacian matrix
L. In cases where L must be computed first from a matrix of sample data A,
one can instead use the first k singular vectors of A [3]. As the first k singular
vectors can be efficiently calculated for very large data sets, this provides a means
to directly estimate the partitioning of a network from sample data. In such
partitioning methods the relationships between nodes seems obfuscated under
multiple approximations; first a crude univariate metric is used (Fig. 1); second
the partitioning of this graph is approximated with a continuous relaxation.
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Fig. 1. Depiction of a network, where nodes e, f , and k are strongly interacting with
i, but only i is interacting with j; (a) the partial correlation ρi,j estimates edges by
removing contributions from e, f, k, identifying the outlier status of j. (b) edges based
on univariate tests such as affinity or distance result in a dense network where all nodes
appear connected.

Spectral clustering has empirically shown promise, even in areas where partial
correlation networks are preferred due to their sound statistical basis. In [3] it
was found that a spectral approach was empirically more generalizable than
simpler clustering methods, in terms of its ability to predict node relatedness for
held-out data. In [1], it is shown that spectral clustering can approximate the
community structure of a partial correlation network.

In this paper, we derive an algorithm for clustering of nodes in partial cor-
relation networks directly from sampled data. The result can be viewed as a
variant of spectral clustering with additional correction terms. We show that it
can be computed with comparable efficiency to spectral clustering and demon-
strate efficient computation for a dense network with roughly 100,000 nodes. We
find that the success of spectral clustering noted above can be attributed to the
small size of this correction term, particularly in situations where preprocessing
steps such as filter are applied to the data.

2 Method

We model the data signal at the ith node as the zero-mean Gaussian random
variable ai. The partial correlation ρi,j between ai and aj is the Pearson corre-
lation between the residuals after regressing out all other nodes except i and j
from both. These regression coefficients are defined as the solutions βi,j to the
linear regression problem

ai =
∑
k 6=i

βi,kak + εi, (1)

where ai is the ith variable and εi is the residual. From these βi,j we can estimate
ρi,j as [6],

ρi,j = −βi,j

√
σi,i

σj,j
, (2)
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using the residual variances σi,i = (V ar(εi))
−1. A common alternative formu-

lation exploits the symmetry of the partial correlation (i.e., that ρi,j = ρi,j by
definition) and uses the geometric mean to cancel the residual variances [7]

ρi,j = sign(βi,j)
√
βi,jβj,i. (3)

This also has the advantage of enforcing symmetry in sample estimates. If the
signs of βi,j and βj,i differ, ρi,j is typically set to zero.

To provide sample formulations of the above estimates, we define A as a
matrix containing data, with samples for ak in the kth column ak (which we will
assume has been standardized). The vector form of the solution to Eq. (1) can

be estimated as βi = A†−iai, where A†−i is the pseudoinverse of A after setting
its ith column to zeros. Eq. (2) in terms of matrices becomes

P = DdBD−1d , (4)

where Dd is a diagonal matrix with Di,i = di = ‖A−iβi − ai‖, and B is a
matrix with with βi as columns (where the ith element of βi is zero). P contains
our sample-based estimates of the partial correlations, with Pi,j describing the
partial correlation between nodes i and j. Again, we can avoid calculating the
residual variances using the method of Eq. (3) as follows,

P = sign(B)� (B�BT )◦
1
2 , (5)

using the Hadamard (element-wise) product � and element-wise exponential ◦ 12 ,
and where the sign function is taken element-wise.

2.1 Efficient Regularized Estimation of Partial Correlation

Thus far we have merely converted sample estimates of partial correlations into
a matrix form. This direct formulation still requires a large amount of compu-
tation for each column of B (i.e., each node), by removing each column of A
in turn, then taking the pseudoinverse of the result. In this subsection we will
derive an efficient approach which only requires a single pseudoinverse for the
entire network estimate. We will also provide a general form which incorporates
regularization, often included as a heuristic data pre-processing step [2].

We incorporate regularization in the derivation by using the regularized pseu-
doinverse solution, βi = (A−i)

†
λ ai, where λ reflects the regularization parameter

used in calculating the pseudoinverse (e.g., the singular value cutoff used). In
order to remove the need for individual node pseudoinverses, we first define the

matrix B(0) with β
(0)
i as its ith column, B(0) = A†λA = R, where A†λ is the

regularized pseudoinverse of A, and where we have defined the (regularized)
resolution matrix R. For convenience we also define Ā−i as A−i with the ith
column (which is all zeros) removed. Then without loss of generality, we pre-
sume that A = (Ā−i,ai), in order to simplify the equations (i.e., the order of
the variables has been permuted so that the ith variable is last). With this we
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can write Aβ
(0)
i = (Ā−i,ai)β

(0)
i = ai. We similarly define β̄i as βi with the ith

element removed (recall βi was defined with a zero in the ith element). Then for
an `2-regularized pseudoinverse, the solution for β̄i is

β̄i = ĀT
−i
(
Ā−iĀ

T
−i + λI

)−1
ai (6)

= ĀT
−i
(
AAT + λI− aia

T
i

)−1
ai (7)

We employ the matrix inversion lemma to get

β̄i = ĀT
−i(AAT + λI)−1ai −

ĀT
−i(AAT + λI)−1aia

T
i (AAT + λI)−1ai

−1 + aTi (AAT + λI)−1ai
(8)

Meanwhile, the least-squares solution for β
(0)
i is,

β
(0)
i = AT

(
AAT + λI

)−1
ai =

(
r̄
(λ)
i

R
(λ)
i,i

)
, (9)

where r̄i is the ith column of the regularized resolution matrix with the ith
element removed, and Ri,i is the (i, i)th element. Utilizing these definitions in
Eq. (8) gives,

β̄i =

(
1

1−Ri,i

)
r̄i (10)

To write the matrix version of this relation between B and R, we form
the matrix R−d defined as R with the values on the diagonal set to zero, and
perform the scaling as B = R−dDs where Ds is a diagonal matrix with Di,i =
si = (1−Ri,i)−1. Inputting this into Eq. (4) gives

P(a) = DdR−dDsD
−1
d . (11)

We can also write the d vector (the diagonal of Dd) as

di = ‖A−iβi − ai‖ =
∣∣∣ 1
1−Ri,i

∣∣∣ ∥∥A (A†ai − ei
)∥∥ , (12)

where ei is the i column of the identity matrix.

We refer to Eq. (11) as the asymmetric version, as we ignore possible asym-
metries Pij 6= Pji. Alternatively, we can extend the symmetric version of Eq. (5)
by plugging in B = R−dDs, to get,

P(s) = sign(1sT )� (ssT )◦
1
2 �R−d. (13)

where s is the vector with elements si = (1−Ri,i)−1. In this version we set Pi,j
equal to zero when sign(si) 6= sign(sj).
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1. Choose number of clusters K and initialize cluster centers ck, k = 1, ...,K;
while Convergence criterion not met do

2. Label each column as belonging to nearest cluster center:
lk = arg miniDik, using minimum over distance Dik between every
column pk and every cluster center ci ;

3. Recalculate cluster centers as mean over data columns with same label:
ci = 1

|Si|
∑

j∈Si
aj , where Si = {k|lk = i} ;

end
Algorithm 1: k-means clustering of columns of P.

2.2 Efficient Clustering of P

Next we will show how to partition the partial correlation network directly using
the raw data A. A basic k-means clustering algorithm which could be used
for clustering the columns of P is given in Algorithm 1. Of course, for a large
network, P will be extremely large as it has one entry per edge, so N nodes
results in a matrix of size N ×N . However, as we have eliminated the need for
node-specific pseudoinverses for each column, we can compute columns on-the-fly
as needed inside the clustering loop, as in

p
(a)
i =

1

di(1−Ri,i)
d� r−i

= d�
(
A†αiai −Ri,iαiei

)
, (14)

where we have defined αi = [di(1 − Ri,i)]−1 and r−i is the ith column of R−d.
We can precompute one pseudoinverse, A†, the d vector from Eq. (12), and
the diagonal terms Ri,i of the resolution matrix. For the symmetric version we
compute columns on the fly with a similar form,

p
(s)
i = sign(si)(sis)◦

1
2 � r−i

= |s|◦ 1
2 � (A†σiai −Ri,iσiei), (15)

where σi = sign(si)|si|
1
2 = sign(1−Ri,i)|1−Ri,i|−

1
2 , which can also be precom-

puted. Generally we write either Eq. (15) or Eq. (14) as

pi = z� (A†ζiai −Ri,iζiei), (16)

for appropriate definitions of z and ζ.

The squared distances between a given center ci and a column pk of P can
be calculated as

D2
ik = ‖ci − pk‖22

= cTi ci + pTk pk − 2cTi pk. (17)



6 K. Dillon

Since we are only concerned with the class index i of the cluster with the mini-
mum distance to each column, we can compute the labels as

lk = arg min
i
D2
ik

= arg min
i

{
cTi ci − 2(ci � z)T (A†ζkak −Rk,kζkek)

}
. (18)

By forming a matrix Cz with weighted cluster centers ci � z as columns, and a
weighted data matrix Aζ with ζiai as columns, we can efficiently compute the
first part of the cross term for all i and k as (CT

z A†)Aζ , a K by n matrix. The
second part of the cross term can be computed by (element-wise) multiplying
each row of CT

z by a vector who’s kth element is Rk,kζk. Similar tactics can be
used to efficiently compute the mean over columns in each cluster, as

ci =
1

|S|
∑
j∈S

pj

=
1

|S|
z�

A†
∑
j∈S

ζjaj −
∑
j∈S

Rj,jζjej

 (19)

So in general, we see that clustering of P can be implemented whenever we
are able to to implement k-means clustering of the original dataset A, taking
roughly double the storage space and computational resources.

In [2] we derived a similar algorithm for clustering columns of the matrix R;
in that case lk = arg mini

{
cTi ci − 2cTi A†ak

}
, and ci = 1

|S|A
†∑

j∈S aj . In [3] we

showed that this algorithm could be viewed as a variant of spectral clustering.
So the corrections relating partial correlation clustering and spectral clustering
are due to the ζj and z scaling factors, plus the ej correction terms.

3 Results

First we produced an artificial dataset with a two-dimensional correlation struc-
ture. We generated 3000 samples for each of 300 random variables, with the kth
random variable defined as,

ak = xks0 + (1− xk)s1 + ykt0 + (1− yk)t1 + σnk,

where s0, s1, t0, and t1 and nk are independent unit-variance random variables,
and xk ∈ [0, 1] and yk ∈ [0, 1] are randomly-chosen points. Effectively, for vari-
ables with (xk, yk) nearer to each other, the signals ak are more correlated. We
expect a simple partitioning of the x, y domain as a result of clustering this
data. Simulated results are given in Fig. 2, using four clusters. By choosing the
regularization parameter at a level equivalent to choosing the first two nontriv-
ial eigenvectors, we achieved similar results for spectral and partial correlation
clustering even in the presence of high noise, while basic k-means clustering of
the noisy signals failed.
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KM =0 SC =0 PC =0 KM =5 SC =5 PC =5

Fig. 2. Simulated results for k-means(KM), spectral clustering (SC), and partial cor-
relation clustering (PC) of data with two-dimensional correlation structure, for noise
levels σ = 0 and 5.

Next we considered a high-dimensional real dataset. Fig. 3 demonstrates the
algorithm applied to functional Magnetic Resonance Imaging (fMRI) scans for a
subject from the Human Connectome Project [8], compared to other clustering
approaches. The data was preprocessed by applying spatial smoothing with a
5mm kernel, and regularization was used to achieve a cutoff of 30 percent of
singular values. The data contains 96854 time series with 1200 time samples
each, resulting in a data matrix A of size 1200 × 96854. Each column contains
a time-series describing the blood-oxygen-level dependent (BOLD) activity in
one voxel of the brain, so a network formed by comparing these signals provides
an estimate of the functional connectivity of the brain. A clustering of this
network would produce an estimate of the modularity of function in the brain.
The network describing the relationships between all pairs of voxels, however,
would require a P matrix of size 96854 × 96854, which is far too large to fit
in RAM. However the limited rank of this matrix means we only need store
the 96854 × 1200 pseudoinverse. In this case the clustering algorithm took 9
seconds on a desktop computer. We see that clustering of P produces much more

Fig. 3. Clustering functional MRI data for single subject from the HCP project into 100
clusters; k-means clustering of the original time series (left); clustering of univariate
correlations between time series (middle); clustering of partial correlations between
time-series (right).

modular segmentation of the regions of the brain, particularly compared to the
conceptually-similar approach of clustering the network of univariate correlations
of the data instead.

We tested the difference between spectral clustering and partial correlation
for this dataset. Using identical random initial clusters for both methods, we
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plot the percentage of nodes which differ in the final clustering results in Fig. 4,
as increasing amounts of spatial smoothing are applied. With spatial smoothing,

0 1 2 3 4 5 6 7 8 9 10

smoothing kernel size (mm)

0

1

2

3

4

5

6

7

p
e
rc

e
n
t 
a
re

a

Fig. 4. Plot of difference between clustering partial correlation network versus spectral
clustering, showing close agreement between the methods, particularly with spatial
smoothing. Spectral clustering in this case uses the covariance matrix of the data as
weighted adjacency matrix.

a common preprocessg step in many applications, the removal of the diagonal
terms will have less effect, as for example, the same information is increasingly
included in the neighboring variables.

4 Discussion

We derived an efficient approach to partitioning partial correlation networks and
demonstrated the approach on neuroimaging data, where we found a close sim-
ilarity to spectral clustering. This suggests another perspective on the success
of spectral clustering methods, as an approximation to clustering of a Gaus-
sian graphical model for the data. A benefit of the proposed approach is its
principled basis as a direct estimate for a partial correlation network. As our
simulation shows, the benefit of spectral clustering over basic k-means can be
viewed, at least in a low-dimensional setting, as resulting from the regularization
effect of truncating the eigenvectors. With the experimental data, we also see a
close agreement with spectral clustering in higher dimensions, particularly when
spatial smoothing is employed. In terms of numerical efficiency, our approach
provides a more efficient calculation compared to the brute-force approach of
solving a separate regression problem for each node.

The drawbacks of the proposed approach include the moderately increased
computational effort, and the potential need to address asymmetric signs in the
partial correlation matrix. Though our approach to address the latter (setting
them to zero based on a sign test) is the approach commonly used in bioinfor-
matics. There are a number of potential extensions to the approach. Instead of a
simple k-means stage, we might apply a more sophisticated clustering algorithm
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such as fuzzy or hierarchical clustering. Also we could extend the distance calcu-
lation to other and more sophisticated statistics or more sophisticated statistical
tests.

5 Appendix: matlab implementation of clustering

In this appendix we provide efficient Matlab code for performing partial corre-
lation clustering.

A = randn(500,100000); % simulate data matrix

lambda = 1; % regularization parameter

k = 100; % number of clusters

[rows_A,cols_A] = size(A);

% standardize data columns

A = bsxfun(@minus,A,mean(A));

A = bsxfun(@times,A,1./sum(A.^2).^.5);

% compute diagonal of R via sum of squared eigenvectors

[uA,sA,vA] = svd(A,’econ’);

r = sum(vA(:,1:rank(A)).^2,2)’;

r = r(:);

% compute pseudoinverse efficiently (assuming fewer rows than columns)

iA_lambda = A’*inv(A*A’-lambda*eye(rows_A));

% compute scaling vectors (symmetric version)

s = 1./(1-r(:));

z = abs(s(:)).^.5;

zeta = sign(s).*abs(s(:)).^.5;

Az = bsxfun(@times,A,z(:)’); % precompute scaled version

% randomly assign columns to clusters initially

c = ceil(rand(cols_A,1)*k);

n_change = inf

while (n_change>0) % clustering loop

M = sparse(1:cols_A,c,1,cols_A,k,cols_A); % cols of M are masks of clusters

M = bsxfun(@times, M, 1./sum(M,1)); % now M is averaging operator

P_c_1 = iA_lambda*(Az*M); % first part of cluster center calc

P_c_2 = bsxfun(@times,M,r.*zeta); % second park (peak removal)

P_c = bsxfun(@times,P_c_1-P_c_2,z(:)); % cluster centers

Pz2_c = sum(P_c.^2,1); % squared term from distance

Cz = bsxfun(@times,P_c,z(:)); % weighted cluster centers

D_ct1 = (Cz’*iA_lambda)*Az; % first part of cross-term

D_ct2 = bsxfun(@times,Cz’,r’.*zeta(:)’); % second part of cross term

D_ct = D_ct1-D_ct2; % cross-term

Dz = bsxfun(@minus,D_ct,.5*Pz2_c’); % dist metric (sans unnecessary term)

c_old = c;

[D_max,c(:)] = max(Dz,[],1); % c is arg of max
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n_change = sum(c~=c_old);

disp(n_change);

end;
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7. Schäfer, J., Strimmer, K.: A Shrinkage Approach to Large-Scale Covariance Matrix
Estimation and Implications for Functional Genomics. Statistical Applications in
Genetics and Molecular Biology 4(1) (2005).

8. Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.E.J., Bucholz,
R., Chang, A., Chen, L., Corbetta, M., Curtiss, S.W., Della Penna, S., Feinberg, D.,
Glasser, M.F., Harel, N., Heath, A.C., Larson-Prior, L., Marcus, D., Michalareas,
G., Moeller, S., Oostenveld, R., Petersen, S.E., Prior, F., Schlaggar, B.L., Smith,
S.M., Snyder, A.Z., Xu, J., Yacoub, E., WU-Minn HCP Consortium: The Human
Connectome Project: a data acquisition perspective. NeuroImage 62(4), 2222–2231
(Oct 2012).

9. Whittaker, J.: Graphical Models in Applied Multivariate Statistics. Wiley Publish-
ing (2009)


